
django-recommends Documentation
Release 0.4.0

Flavio Curella

November 28, 2016





Contents

1 Quickstart 3

2 Recommendation Providers 5
2.1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Recommendation Algorithms 9
3.1 NaiveAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 RecSysAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Models 11

5 Storage backend 13
5.1 RedisStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 DjangoOrmStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 MongoStorage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Signals 17

7 Template Tags & Filters 19
7.1 Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 Templatetags Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 Settings 21
8.1 Autodiscovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.2 Celery Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.3 Template tags and filters cache timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.4 Storage backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
8.5 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9 Large Datasets 23

10 Changelog 25

11 Requirements 29
11.1 Optional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

12 Indices and tables 31

i



ii



django-recommends Documentation, Release 0.4.0

A django app that builds item-based suggestions for users.

Contents:

Contents 1



django-recommends Documentation, Release 0.4.0

2 Contents



CHAPTER 1

Quickstart

1. Install django-recommends with:

$ pip install django-recommends

2. Create a RecommendationProvider for your models, and register it in your AppConfig (see Recommendation
Providers)

3. Add ’recommends’ and ’recommends.storages.djangoorm’ to INSTALLED_APPS

4. Run syncdb

3



django-recommends Documentation, Release 0.4.0

4 Chapter 1. Quickstart



CHAPTER 2

Recommendation Providers

In order to compute and retrieve similarities and recommendations, you must create a RecommendationProvider
and register it with the model that represents the rating and a list of the models that will receive the votes.

A RecommendationProvider is a class that specifies how to retrieve various informations (items, users, votes)
necessary for computing recommendation and similarities for a set of objects.

Subclasses override properties amd methods in order to determine what constitutes rated items, a rating, its score, and
user.

The algorithm to use for computing is specified by the algorithm property.

A basic algorithm class is provided for convenience at recommends.algorithms.naive.NaiveAlgorithm,
but users can implement their own solutions. See Recommendation Algorithms.

Example:

# models.py
from __future__ import unicode_literals
from django.db import models
from django.contrib.auth.models import User
from django.contrib.sites.models import Site
from django.utils.encoding import python_2_unicode_compatible

@python_2_unicode_compatible
class Product(models.Model):

"""A generic Product"""
name = models.CharField(blank=True, max_length=100)
sites = models.ManyToManyField(Site)

def __str__(self):
return self.name

@models.permalink
def get_absolute_url(self):

return ('product_detail', [self.id])

def sites_str(self):
return ', '.join([s.name for s in self.sites.all()])

sites_str.short_description = 'sites'

@python_2_unicode_compatible
class Vote(models.Model):

5



django-recommends Documentation, Release 0.4.0

"""A Vote on a Product"""
user = models.ForeignKey(User, related_name='votes')
product = models.ForeignKey(Product)
site = models.ForeignKey(Site)
score = models.FloatField()

def __str__(self):
return "Vote"

Create a file called recommendations.py inside your app:

# recommendations.py

from django.contrib.auth.models import User
from recommends.providers import RecommendationProvider
from recommends.providers import recommendation_registry

from .models import Product, Vote

class ProductRecommendationProvider(RecommendationProvider):
def get_users(self):

return User.objects.filter(is_active=True, votes__isnull=False).distinct()

def get_items(self):
return Product.objects.all()

def get_ratings(self, obj):
return Vote.objects.filter(product=obj)

def get_rating_score(self, rating):
return rating.score

def get_rating_site(self, rating):
return rating.site

def get_rating_user(self, rating):
return rating.user

def get_rating_item(self, rating):
return rating.product

recommendation_registry.register(Vote, [Product], ProductRecommendationProvider)

All files called recommendations.py will be autodiscovered and loaded by django-recommends.
You can change the default module name, or disable autodiscovery by tweaking the
RECOMMENDS_AUTODISCOVER_MODULE setting (see Settings), or you could manually import your module
in your app’s AppConfig.ready:

# apps.py

from django.apps import AppConfig

class MyAppConfig(AppConfig):
name = 'my_app'

def ready(self):
from .myrecs import *

6 Chapter 2. Recommendation Providers



django-recommends Documentation, Release 0.4.0

2.1 Properties

• signals

This property define to which signals the provider should listen to. A method of the same name will
be called on the provider when the corresponding signal is fired from one of the rated model.

See Signals.

Defaults to [’django.db.models.pre_delete’]

• algorithm

Defaults to recommends.algorithms.naive.NaiveAlgorithm

2.2 Methods

• get_items(self)

This method must return items that have been voted.

• items_ignored(self)

Returns user ignored items. User can delete items from the list of recommended.

See recommends.converters.IdentifierManager.get_identifier for help.

• get_ratings(self, obj)

Returns all ratings for given item.

• get_rating_user(self, rating)

Returns the user who performed the rating.

• get_rating_score(self, rating)

Returns the score of the rating.

• get_rating_item(self, rating)

Returns the rated object.

• get_rating_site(self, rating)

Returns the site of the rating. Can be a Site object or its ID.

Defaults to settings.SITE_ID.

• is_rating_active(self, rating)

Returns if the rating is active.

• pre_store_similarities(self, itemMatch)

Optional. This method will get called right before passing the similarities to the storage.

For example, you can override this method to do some stats or visualize the data.

• pre_delete(self, sender, instance, **kwargs)

This function gets called when a signal in self.rate_signals is fired from one of the rated
models.

Overriding this method is optional. The default method removes the suggestions for the deleted
objected.

2.1. Properties 7



django-recommends Documentation, Release 0.4.0

See Signals.

8 Chapter 2. Recommendation Providers



CHAPTER 3

Recommendation Algorithms

A Recommendation Algorithm is a subclass of recommends.algorithms.base.BaseAlgorithm that im-
plements methods for calculating similarities and recommendations.

Subclasses must implement this methods:

• calculate_similarities(self, vote_list)

Must return an dict of similarities for every object:

Accepts a list of votes with the following schema:

[
("<user1>", "<object_identifier1>", <score>),
("<user1>", "<object_identifier2>", <score>),

]

Output must be a dictionary with the following schema:

[
("<object_identifier1>", [

(<related_object_identifier2>, <score>),
(<related_object_identifier3>, <score>),

]),
("<object_identifier2>", [

(<related_object_identifier2>, <score>),
(<related_object_identifier3>, <score>),

]),
]

• calculate_recommendations(self, vote_list, itemMatch)

Returns a list of recommendations:

[
(<user1>, [

("<object_identifier1>", <score>),
("<object_identifier2>", <score>),

]),
(<user2>, [

("<object_identifier1>", <score>),
("<object_identifier2>", <score>),

]),
]

9



django-recommends Documentation, Release 0.4.0

3.1 NaiveAlgorithm

This class implement a basic algorithm (adapted from: Segaran, T: Programming Collective Intelligence) that doesn’t
require any dependency at the expenses of performances.

3.1.1 Properties

• similarity

A callable that determines the similiarity between two elements.

Functions for Euclidean Distance and Pearson Correlation are provided
for convenience at recommends.similarities.sim_distance and
recommends.similarities.sim_pearson.

Defaults to recommends.similarities.sim_distance

3.2 RecSysAlgorithm

This class implement a SVD algorithm. Requires python-recsys (available at https://github.com/ocelma/python-
recsys).

python-recsys in turn requires SciPy, NumPy, and other python libraries.

10 Chapter 3. Recommendation Algorithms

https://github.com/ocelma/python-recsys
https://github.com/ocelma/python-recsys


CHAPTER 4

Models

Recommends uses these classes to represent similarities and recommendations. These classes don’t have be Django
Models (ie: tied to a table in a database). All they have to do is implementing the properties descripted below.

class Similarity
A Similarity is an object with the fellowing properties:

object
The source object.

related_object
The target object

score
How much the related_object is similar to object.

class Recommendation
A Recommendation is an object with the fellowing properties:

object
The object being suggested to the user.

user
The user we are suggesting object to.

score
How much the user is supposed to like object.

11



django-recommends Documentation, Release 0.4.0

12 Chapter 4. Models



CHAPTER 5

Storage backend

Results of the computation are stored according to the storage backend defined in
RECOMMENDS_STORAGE_BACKEND (default to ’recommends.storages.djangoorm.storage.DjangoOrmStorage’).
A storage backend defines how de/serialize and store/retrieve objects and results.

A storage backend can be any class extending recommends.storages.base.RecommendationStorage
that implements the following methods and properties:

get_identifier(self, obj, *args, **kwargs)
Given an object and optional parameters, returns a string identifying the object uniquely.

resolve_identifier(self, identifier)
This method is the opposite of get_identifier. It resolve the object’s identifier to an actual model.

get_similarities_for_object(self, obj, limit, raw_id=False)

if raw_id = False: Returns a list of Similarity objects for given obj, ordered by score.

else: Returns a list of similar model ids[pk] for given obj, ordered by score.

Example:

[
{

"related_object_id": XX, "content_type_id": XX
},
..

]

get_recommendations_for_user(self, user, limit, raw_id=False)

if raw_id = False: Returns a list of Recommendation objects for given user, order by score.

else: Returns a list of recommended model ids[pk] for given user, ordered by score.

Example:

[
{

"object_id": XX, "content_type_id": XX
},
..

]

get_votes(self)
Optional.

Retrieves the vote matrix saved by store_votes.

13



django-recommends Documentation, Release 0.4.0

You won’t usually need to implement this method, because you want to use fresh data. But it might be useful if
you want some kind of heavy caching, maybe for testing purposes.

store_similarities(self, itemMatch)

store_recommendations(self, user, recommendations)
Stores all the recommendations.

recommendations is an iterable with the following schema:

(
(

<user>,
(

(<object_identifier>, <score>),
(<object_identifier>, <score>)

),
)

)

store_votes(self, iterable)
Optional.

Saves the vote matrix.

You won’t usually need to implement this method, because you want to use fresh data. But it might be useful if
you want to dump the votes on somewhere, maybe for testing purposes.

iterable is the vote matrix, expressed as a list of tuples with the following schema:

[
("<user_id1>", "<object_identifier1>", <score>),
("<user_id1>", "<object_identifier2>", <score>),
("<user_id2>", "<object_identifier1>", <score>),
("<user_id2>", "<object_identifier2>", <score>),

]

remove_recommendations(self, obj)
Deletes all recommendations for object obj.

remove_similarities(self, obj)
Deletes all similarities that have object obj as source or target.

get_lock(self)
Optional. Acquires an exclusive lock on the storage is acquired. Returns True if the lock is aquired, or False
if the lock is already acquired by a previous process.

release_lock(self)
Optional. Releases the lock acquired with the get_lock method.

5.1 RedisStorage

This storage allows you to store results in Redis. This is the recommended storage backend, but it is not the default
because it requires you to install redis-server.

14 Chapter 5. Storage backend



django-recommends Documentation, Release 0.4.0

5.1.1 Options

threshold_similarities Defaults to 0. Only similarities with score greater than threshold
similarities will be persisted.

threshold_recommendations Defaults to 0. Only recommendations with score greater than threshold
similarities will be persisted.

5.1.2 Settings

RECOMMENDS_STORAGE_REDIS_DATABASE: A dictionary representing how to connect to the redis server. De-
faults to:

{
'HOST': 'localhost',
'PORT': 6379,
'NAME': 0

}

5.2 DjangoOrmStorage

This is the default storage. It requires minimal installation, but it’s also the less performant.

This storage allows you to store results in a database specified by your DATABASES setting.

In order to use this storage, you’ll also need to add ’recommends.storages.djangoorm’ to your
INSTALLED_APPS.

5.2.1 Options

threshold_similarities Defaults to 0. Only similarities with score greater than threshold
similarities will be persisted.

threshold_recommendations Defaults to 0. Only recommendations with score greater than threshold
similarities will be persisted.

5.2.2 Settings

To minimize disk I/O from the database, Similiarities and Suggestions will be committed in batches. The
RECOMMENDS_STORAGE_COMMIT_THRESHOLD setting set how many record should be committed in each batch.
Defaults to 1000.

RECOMMENDS_STORAGE_DATABASE_ALIAS is used as the database where sim-
ilarities and suggestions will be stored. Note that you will have to add
recommends.storages.djangoorm.routers.RecommendsRouter to your settings’
DATABASE_ROUTERS if you want to use something else than the default database. Default value is set to
’recommends’.

5.2. DjangoOrmStorage 15



django-recommends Documentation, Release 0.4.0

5.3 MongoStorage

5.3.1 Options

threshold_similarities Defaults to 0. Only similarities with score greater than threshold
similarities will be persisted.

threshold_recommendations Defaults to 0. Only recommendations with score greater than threshold
similarities will be persisted.

5.3.2 Settings

RECOMMENDS_STORAGE_MONGODB_DATABASE: A dictionary representing how to connect to the mongodb server.
Defaults to:

{
'HOST': 'localhost',
'PORT': 27017,
'NAME': 'recommends'

}

RECOMMENDS_STORAGE_MONGODB_FSYNC: Boolean specifying if MongoDB should force writes to the disk. De-
fault to False.

16 Chapter 5. Storage backend



CHAPTER 6

Signals

When a signal specified in the provider is fired up by the one of the rated models, Django-recommends automaticaly
calls a function with the same name.

You can override this function or connect to a different set of signals on the provider using the signals property:

from django.db.models.signals import post_save, post_delete

class MyProvider(DjangoRecommendationProvider):
signals = ['django.db.models.post_save', 'django.db.models.pre_delete']

def post_save(self, sender, instance, **kwargs):
# Code that handles what should happen...

def pre_delete(self, sender, instance, **kwargs):
# Code that handles what should happen...

By default, a RecommendationProvider registers a function with the pre_delete signal that removes the
suggestion for the deleted rated object (via its storage’s remove_recommendation and remove_similarity
methods).

17



django-recommends Documentation, Release 0.4.0

18 Chapter 6. Signals



CHAPTER 7

Template Tags & Filters

To use the included template tags and filters, load the library in your templates by using {% load recommends
%}.

7.1 Filters

The available filters are:

similar:<limit>: returns a list of Similarity objects, representing how much an object is similar to the given
one. The limit argument is optional and defaults to 5:

{% for similarity in myobj|similar:5 %}
{{ similarity.related_object }}

{% endfor %}

7.2 Tags

The available tags are:

{% suggested as <varname> [limit <limit>] %}: Returns a list of Recommendation (suggestions of
objects) for the current user. limit is optional and defaults to 5:

{% suggested as suggestions [limit 5] %}
{% for suggested in suggestions %}

{{ suggested.object }}
{% endfor %}

7.3 Templatetags Cache

By default, the templatetags provided by django-recommends will cache their result for 60 seconds. This time can be
overridden via the RECOMMENDS_CACHE_TEMPLATETAGS_TIMEOUT.

19



django-recommends Documentation, Release 0.4.0

20 Chapter 7. Template Tags & Filters



CHAPTER 8

Settings

8.1 Autodiscovery

By default, django-recommends will import and load any modules called recommendations within your
apps.

You can change the default module name by setting RECOMMENDS_AUTODISCOVER_MODULE to the name that you
want, or you can disable this behavior by setting it to False.

8.2 Celery Task

Computations are done by a scheduled celery task.

The task is run every 24 hours by default, but can be overridden by the RECOMMENDS_TASK_CRONTAB setting:

RECOMMENDS_TASK_CRONTAB = {'hour': '*/24'}

RECOMMENDS_TASK_CRONTAB must be a dictionary of kwargs acceptable by celery.schedulers.crontab.

If you don’t want to run this task (maybe because you want to write your own), set RECOMMENDS_TASK_RUN =
False

Additionally, you can specify an expiration time for the task by using the RECOMMENDS_TASK_EXPIRES settings,
which defaults to None.

8.3 Template tags and filters cache timeout

RECOMMENDS_CACHE_TEMPLATETAGS_TIMEOUT controls how long template tags and fitlers cache their
results. Default is 60 seconds.

8.4 Storage backend

RECOMMENDS_STORAGE_BACKEND specifies which Storage backend class to use for storing similarity and rec-
ommendations. Defaults to ’recommends.storages.djangoorm.DjangoOrmStorage’. Providers can
override this settings using the storage property (see Recommendation Providers).

21



django-recommends Documentation, Release 0.4.0

8.5 Logging

RECOMMENDS_LOGGER_NAME specifies which logger to use. Defaults to ’recommends’.

22 Chapter 8. Settings



CHAPTER 9

Large Datasets

Calculating item similarities is computationally heavy, in terms of cpu cycles, amount of RAM and database load.

Some strategy you can use to mitigate it includes:

• Parallelize the precomputing task. This could be achieved by disabling the default task (via
RECOMMENDS_TASK_RUN = False) and breaking it down to smaller tasks (one per app, or one per model),
which will be distributed to different machines using dedicated celery queues.

23



django-recommends Documentation, Release 0.4.0

24 Chapter 9. Large Datasets



CHAPTER 10

Changelog

• v0.4.0

– Drop support for Django 1.7.

– Add support for Django 1.10.

• v0.3.11

– Start deprecating GhettoAlgorithm in favor of NaiveAlgorithm.

• v0.3.1

– Fix wrong import

• v0.3.0

– Added support for Django 1.9.

• v0.2.2

– Added Python 3.3 Trove classifier to setup.py.

• v0.2.1

– Added Python 3.4 Trove classifier to setup.py.

• v0.2.0

– Added support for Python 3.4

– Dropped support for Celery 2.x

• v0.1.0

– Django 1.8 compatibility. Removed support for Django 1.6.

– Added Providers autodiscovery.

• v0.0.22

– Django 1.7 compatibility. Thanks Ilya Baryshev.

• v0.0.21

– Release lock even if an exception is raised.

• v0.0.20

– Removed lock expiration in Redis Storage.

• v0.0.19

25



django-recommends Documentation, Release 0.4.0

– added storages locking. Thanks Kirill Zaitsev.

• v0.0.16

– renamed --verbose option to --verbosity.

– The recommends_precompute method is available even with RECOMMENDS_TASK_RUN =
False.

• v0.0.15

– added --verbose option to recommends_precompute command.

• v0.0.14

– more verbose recommends_precompute command. Thanks WANG GAOXIANG.

– Introduced ‘‘raw_id‘ parameter for lighter queries. WANG GAOXIANG.

– Introduced RECOMMENDS_STORAGE_MONGODB_FSYNC setting.

• v0.0.13

– Use {} instead of dict() for better performance.

• v0.0.12

– python 3.3 and Django 1.5 compatibility

• v0.0.11

– get_rating_site provider method now defaults to settings.SITE_ID instead of None.

– similarities templatetag result is now cached per object

– fixed tests if recommends_precompute is None.

– explicitly named celery tasks.

• v0.0.10

– Added RecSysAlgorithm.

• v0.0.9

– Now tests can run in app’s ./manage.py test. Thanks Andrii Kostenko.

– Added support for ignored user recommendation. Thanks Maxim Gurets.

• v0.0.8

– Added threshold_similarities and threshold_recommnedations to the storage
backends.

• v0.0.7

– added Mongodb storage

– added Redis storage

– added unregister method to the registry

• v0.0.6

– added logging

– DjangoOrmStorage now saves Similarities and Suggestions in batches, according to the new
RECOMMENDS_STORAGE_COMMIT_THRESHOLD setting.

– Decoupled Algorithms from Providers

26 Chapter 10. Changelog



django-recommends Documentation, Release 0.4.0

• v0.0.5

– Refactored providers registry

– Renamed recommends.storages.django to recommends.storages.djangoorm to avoid name conflicts

– Refactored DjangoOrmStorage and moved it to recommends.storages.djangoorm.storage

– Added optional database router

• v0.0.4

– Refactored providers to use lists of votes instead of dictionaries

– fixed a critical bug where we ere calling the wrong method with the wrong signature.

• v0.0.3

– Added filelocking to the pre-shipped precomputing task

– Refactored signal handling, and added a task to remove similarities on pre_delete

– Added optional hooks for storing and retrieving the vote matrix

• v0.0.2

– Added the RECOMMENDS_TASK_RUN setting

• v0.0.1

– Initial Release

27



django-recommends Documentation, Release 0.4.0

28 Chapter 10. Changelog



CHAPTER 11

Requirements

• Python 2.7, Python 3.3+

• Django>=1.8

• celery>=3

• django-celery>=2.3.3

11.1 Optional

• redis

• pymongo

• python-recsys (Python 2.x only)

29



django-recommends Documentation, Release 0.4.0

30 Chapter 11. Requirements



CHAPTER 12

Indices and tables

• genindex

• modindex

• search

31



django-recommends Documentation, Release 0.4.0

32 Chapter 12. Indices and tables



Index

G
get_identifier(), 13
get_lock(), 14
get_recommendations_for_user(), 13
get_similarities_for_object(), 13
get_votes(), 13

O
object (Recommendation attribute), 11
object (Similarity attribute), 11

R
Recommendation (built-in class), 11
related_object (Similarity attribute), 11
release_lock(), 14
remove_recommendations(), 14
remove_similarities(), 14
resolve_identifier(), 13

S
score (Recommendation attribute), 11
score (Similarity attribute), 11
Similarity (built-in class), 11
store_recommendations(), 14
store_similarities(), 14
store_votes(), 14

U
user (Recommendation attribute), 11

33


	Quickstart
	Recommendation Providers
	Properties
	Methods

	Recommendation Algorithms
	NaiveAlgorithm
	RecSysAlgorithm

	Models
	Storage backend
	RedisStorage
	DjangoOrmStorage
	MongoStorage

	Signals
	Template Tags & Filters
	Filters
	Tags
	Templatetags Cache

	Settings
	Autodiscovery
	Celery Task
	Template tags and filters cache timeout
	Storage backend
	Logging

	Large Datasets
	Changelog
	Requirements
	Optional

	Indices and tables

